Residential and Commercial Capacity Absorption Heat Pumps for Space and Domestic Water Heating Applications

Michael Garrabrant, Roger Stout, Matthew Blaylock, Christopher Keinath

Stone Mountain Technologies, Inc.
Johnson City, TN, USA

12th IEA Heat Pump Conference
Rotterdam Netherlands
15th – 18th May 2017
Outline

- Introduction
- Modeling and Analysis
- 23.5 kW GAHP Residential Combi (Space and Water Heater)
- 41 kW GAHP Commercial Water Heater
- 3 kW GAHP Residential Water Heater
- Energy and Economic Savings
- Conclusions
What We Use For Gas Heating Has Not Changed Much

Furnaces | Boilers | Water Heaters

Non-Condensing Models Are 75 – 83% Efficient
Condensing Models Are 90 – 98% Efficient

Need COP >> 1.0

Must Work at Low Ambients
Must be Economically Viable

Gas Heat Pumps (GAHP) offer next step in COP & significant opportunity to decarb heating w/o impact on grid
Family of Absorption Heat Pumps, 3-40 kW
Development Goals

- Reduce Cost By 50%
- Scalable Capacity
- Simple, Reliable
- Application / Fuel Flexible
 - Space, Water, Pool
 - Gas, LP, Oil, Biodiesel
Gas-fired Absorption Heat Pumps (GAHP)

- **Offer COP values >> 1**
- **Maintain heating performance at low ambients**

- **Single-effect** ammonia-water absorption heat pump
 - SHX & RHX effectiveness of 0.97 & 0.93
 - Evap-Amb pinch of 3°C
 - CHX-Hyd pinch of 3°C
 - HCA pinch of 3°C
 - Condenser pinch of 10°C

- **SE versus GAX**
 - Lower desorber temps than GAX
 - Better reliability
 - More options for NC control
 - Fewer heat exchangers
 - Easier to control
Cycle Modeling and Analysis

- GAHP cycle models for the 23.5, 41 and 3 kW systems that were developed in Engineering Equation Solver (EES) were used to evaluate experimental results.

\[
Q_{Hydronic} = \dot{m} \times c_p \times (T_{Hydronic\ Out} - T_{Hydronic\ In}) \quad COP_{GAS,HHV} = \frac{Q_{Hydronic}}{Q_{Gas}}
\]

COP_gas based on Higher Heating Value (HHV)
GAHP Test Facility

- Allowed for testing at ambient temperatures of -17.8 to 12.8°C
- Hydronic return temperatures of 27 to 52°C
23.5 kW of heat at hydronic return/ambient conditions of 37.7/8.3°C
Target COP_gas, HHV of 1.45 at above conditions
Size: Approximately 1 square meter
Air-coupled evaporator occupies 64% of total footprint
Stand alone units designed to maintain set hydronic supply or return temperature when call for heat is present
23.5 GAHP Residential Combi

- Steady state testing performed with 2nd Generation (Beta) Units
- Units performed near design for the range of operating conditions investigated
- Maximum Supply Temperature: 71°C
ANSI Z21.40.4 test method used to estimate the Annualized Fuel Utilization Efficiency (AFUE)

Performance analyzed for climate region IV (-15°C design ambient, 5643 bin hours)

Predicted AFUE of 141% achieved (HHV)

4:1 Modulation

<table>
<thead>
<tr>
<th>Rating Point</th>
<th>Ambient Temp, °C</th>
<th>Hydronic Supply, °C</th>
<th>Hydronic Return, °C</th>
<th>Firing Rate, kW</th>
<th>Heating load, kW</th>
<th>COP_{GAS,HHV}</th>
<th>Total Electric Usage, kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.2</td>
<td>38.4</td>
<td>35</td>
<td>4.8</td>
<td>7.5</td>
<td>1.56</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>38.2</td>
<td>35</td>
<td>4.9</td>
<td>7.2</td>
<td>1.46</td>
<td>0.29</td>
</tr>
<tr>
<td>3</td>
<td>-8.2</td>
<td>37.9</td>
<td>35</td>
<td>4.5</td>
<td>5.9</td>
<td>1.32</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>-8.3</td>
<td>40.9</td>
<td>35</td>
<td>9.0</td>
<td>12.4</td>
<td>1.37</td>
<td>0.36</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>45.1</td>
<td>35</td>
<td>15.6</td>
<td>22.4</td>
<td>1.43</td>
<td>0.49</td>
</tr>
<tr>
<td>6</td>
<td>-8.3</td>
<td>45.2</td>
<td>35</td>
<td>16.6</td>
<td>21.9</td>
<td>1.32</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>-13.9</td>
<td>44.8</td>
<td>35</td>
<td>16.3</td>
<td>21.1</td>
<td>1.30</td>
<td>0.53</td>
</tr>
</tbody>
</table>
23.5 GAHP Residential Combi

- Active defrost investigated on Beta units
- Control strategy for defrost period optimized
- Allows unit to continue to run and provide heating
Space Heating Combi Demonstration

- 23.5 kW GAHP
 - 4:1 Modulating

- Hydronic Air-Handler
 - 3-Speed

- Indirect DHW Storage Tank

- Home Owner Feedback Very Positive

- 200 m²
 - Single Family Home
 - Built 1947
41 kW of heat at hydronic return/ambient conditions of 37.7/8.3°C

Target COP_gas,HHV of 1.45 at above conditions

Unit W × D × H of 1.4 × 1.0 × 1.5 meters

Evaporator occupies 64% of total footprint

4:1 Modulation
Steady state testing performed with second prototype
Unit performed within 4% of at hydronic return/ambient conditions of 37.7/8.3°C
Performance reduced at off-design conditions to within 12% of model
Maximum Supply Temperature: 71°C
3 kW GAHP Residential Water Heater

- GAHP system is designed to mount on top of domestic hot water storage tank (similar of EHPWHs)
- GAHP is hydronically coupled to the storage tank with an internal coil
- Flue gas passes through a separate internal coil to allow for condensation of water in the flue gas

Steady state testing performed with 3rd Generation Units

Range of water inlet (29-57°C) and ambient (5-20°C) temperatures investigated

Units performed within 15% of design for the range of operating conditions investigated

* Heat input from the condensing flue gas heat exchanger is not included
Energy and Economic Savings

- **Residential Water Heating (3 kW)**
 - Demonstrated 50% energy savings compared to non-condensing gas storage
 - Save $123 per year for average family in U.S.

- **Residential Space Heating (23.5 kW)**
 - For U.S. Climate Region IV (aka Chicago)
 - GAHP = 141% AFUE / 28,597 kWh natural gas
 - Gas Furnace = AFUE 90% / 45,136 kWh natural gas
 - Save $994 (assuming $0.62 per m3)

- **Commercial Water Heating (41 kW)**
 - GAHP modeled to reduce energy usage by 35% for a Full Service Restaurant, (8000 L/day), compared to condensing, for 6 warm climate cities in U.S.
 - Annual energy and operating cost savings range from 48,600 to 55,600 kWh and $2900 to $3400 (US)
Conclusions

- **The 23.5 kW system is in its 2nd Generation of development**
 - AFUE of 141\% was achieved (HHV) for -15°C design temperature climate zone
 - 4:1 modulation was achieved
 - 2nd Round of Field Testing: 2017/2018

- **The 41 kW system is in its 1st Generation of development**
 - The unit performed within 4\% of design at standard conditions
 - Initial Field Testing: 2017/2018

- **The 3 kW system is in its 3rd Generation development**
 - Demonstrated energy savings of 50\% in initial field tests
 - 4th Round of Field Testing: 2017/2018

- **Scalable, Simple, Cost Effective Design Established**

- **Significant Potential to DeCarb Heating w/o Impacting Grid**
Next Steps

23.5 kW GAHP
Field test of four units (2017-2018)

41 kW GAHP
Filed test of one unit (2017-2018)

3 kW GAHP Residential Water Heater
Field test of one unit (2016-2017)
Field test of six units (2017-18)

Fuel-Oil / Biodiesel Model
5kW Combi Model
CHP Model (cooling)
Acknowledgements
Thank You

Michael Garrabrant, PE
President & CEO
Stone Mountain Technologies, Inc.
Johnson City, TN, USA

mgarrabrant@stonemtnttechnologies.com